

# **BRAIN HEART INFUSION AGAR**

- For in vitro use only -

#### Plated Media

PB50 – Brain Heart Infusion Agar (BHIA) PB55DP – BHIA w 10% Sheep Blood (Double Pour) PB54DP – BHIA w 10% SB & CC (Double Pour) PB56 – BHIA w 5% Sheep Blood PB56DP – BHIA w 5% Sheep Blood (Double Pour) PB58DP – BHIA w 5% SB & CC (Double Pour)

Brain Heart Infusion Agar is a general purpose plating medium used for the isolation, cultivation, and maintenance of a variety of fastidious and nonfastidious microorganisms.

In 1919, Rosenow devised an excellent medium for culturing streptococci by using a dextrose broth supplemented with brain tissue. Rosenow's formulation was later modified by Hayden whom found the addition of crushed marble resulted in favorable growth of dental pathogens. Our current formulation contains infusion from calf brain in place of brain tissue and disodium phosphate has replaced calcium carbonate.

BHI Agar is a highly nutritious base that meets the growth requirements of many types of microorganisms including bacteria, yeasts, and molds. BHI Agar supplemented with (5 to 10%) defibrinated sheep blood is used extensively for the recovery of dimorphic fungi such as Histoplasma capsulatum and other pathogenic fungi such as Coccidioides immitis. A more selective formulation containing chloramphenicol cycloheximide is also available that will allow the recovery of pathogenic fungi while inhibiting a wide range of bacteria and saprophytic fungi. McDonough et al. demonstrated that the temperature of incubation may alter the sensitivity of some pathogenic fungi to antibiotics; it is therefore recommended that both an antimicrobiccontaining medium and non-selective medium be used on primary isolates at both 25°C and 35°C.

The double pour media is poured extra thick to maintain the moisture level of the medium where prolonged incubation of the media is required.

## **Tubed Media**

TB50-05 - BHIA Slant TB50-18 – BHIA Pour Plate TB51 – BHIA w 10% Sheep Blood Slant TB52 – BHIA w 5% Sheep Blood Slant

## Formulation per Litre of Medium

| PB50 & TB50 Brain Heart Infusion Agar |        |
|---------------------------------------|--------|
| Infusion from Calf Brain              | 12.5 g |
| Infusion from Beef Heart              | 5.0 g  |
| Pancreatic Digest of Casein           | 10.0 g |
| Sodium Chloride                       | 5.0 g  |
| Glucose                               | 2.0 g  |
| Disodium Phosphate                    | 2.5 g  |
| Agar                                  | 15.0 g |
|                                       |        |

 $pH 7.4 \pm 0.2$ 

| Additional Ingredients per Liter:                              |
|----------------------------------------------------------------|
| PB54DP BHIA with 10% Sheep Blood & CC                          |
| Defibrinated Sheep Blood100.0 mL                               |
| Chloramphenicol50 mg                                           |
| Cycloheximide500 mg                                            |
| PB55 & TB51 BHIA with 10% Sheep Blood Defibrinated Sheep Blood |
| PB56 & TB52 BHIA with 5% Sheep Blood                           |
| Defibrinated Sheep Blood50.0 mL                                |
| PB58DP BHIA with 5% Sheep Blood & CC                           |
| Defibrinated Sheep Blood50.0 mL                                |
| Chloramphenicol50 mg                                           |
| Cycloheximide500 mg                                            |

#### **Recommended Procedure**

(Please refer to appropriate literature for a more detailed procedure)

- 1. Allow medium to adjust to room temperature prior to inoculation.
- 2. Inoculate by performing a four-quadrant streak on the plated media to obtain well-isolated colonies. For tubed media, streak the surface of the medium in a fishtail motion from the bottom up.
- 3. If inoculating a selective medium, it is recommended that a non-selective medium be concurrently inoculated to isolate sensitive strains. All plates should be done in duplicate so that one set can be incubated at room temperature and the other set at 35°C.
- 4. Incubate aerobically at 35°C. For culturing fungi; it is recommended that duplicates be made with one incubated at room temperature and the other at 35°C.
- 5. Examine plates and tubes after 18 to 24 hours and at 48 hours. Some fungi may require prolonged incubation for growth therefore keep all plates for 7 days prior to discarding.

## **Interpretation of Results**

After the incubation period examine plates for organisms of interest. When examining primary plates a hand lens or stereoscopic microscope should be available for examining very small colonies. The different types of colonial morphology appearing on the agar plate should be noted as well as the number of each morphotype present. Hemolysis is a useful differential characteristic that is best viewed when a bright light is transmitted from behind the plate.

Additional results such as pigment production and odor should also be recorded. Additional tests should be performed on isolated colonies from pure culture in order to complete identification.

 Certain pathogenic fungi may be inhibited on selective formulations of BHI therefore inoculation onto a non-selective medium is prescribed • Since nutritional requirements of organisms vary, some strains may be encountered that fail to grow or grow poorly on this medium

### **Quality Control**

After checking for correct pH, color, depth, and sterility, the following organisms are used to determine the growth performance of the completed medium.

| <u>Organism</u>          | Expected Result |
|--------------------------|-----------------|
| BHI Agar                 |                 |
| Streptococcus pneumoniae | Growth          |
| ATCC 6305                |                 |
| Pseudomonas aeruginosa   | Growth          |
| ATCC 27853               |                 |

## BHIA w/ Sheep Blood

| Streptococcus pyogenes   | Growth, β-hemolysis         |
|--------------------------|-----------------------------|
| ATCC 19615               |                             |
| Streptococcus pneumoniae | Growth, $\alpha$ -hemolysis |
| ATCC 6305                |                             |
| Staphylococcus aureus    | Growth                      |
| ATCC 25923               |                             |
| Escherichia coli         | Growth                      |
| ATCC 25922               |                             |
| Aspergillus niger        | Growth                      |
| ATCC 9642                |                             |
| Candida albicans         | Growth                      |
| ATCC 10231               |                             |

#### BHIA w SB, Chloramphenicol & Cycloheximide

| ,                 | Charrie    |  |
|-------------------|------------|--|
| Aspergillus niger | Growth     |  |
| ATCC 9642         |            |  |
| Escherichia coli  | Inhibition |  |
| ATCC 25922        |            |  |

#### **Storage and Shelf Life**

Our various BHI Agar formulations should be stored away from direct light at 4°C to 8°C. For plated media, the medium side should be uppermost to prevent excessive accumulation of

moisture on the agar surface. Under these conditions the plated mediums have a 12 week shelf life. Our tubed media have the following shelf lives:

TB50-05 – BHIA Slant – 16 weeks TB50-18 – BHIA Pour Plate – 16 weeks TB51 – BHIA w 10% Shp Blood Slant – 12 weeks TB52 – BHIA w 5% Shp Blood Slant – 12 weeks

#### References

- 1. Rosenow EC. Studies on elective localization. J Dent Research 1919; 1:205-49.
- 2. Hayden RL. Elective localization in the eye of bacteria from infected teeth. Arch Int Med 1923; 32:828-49.
- 3. Georg LK, Ajello L, Papageorge C. Use of cycloheximide in the selective isolation of fungi pathogenic to man. J Lab Clin Med 1954; 44:422-8.
- 4. McDouough ES, Georg LK, Ajello L, Brinkman S. Growth of dimorphic human pathogenic fungi on media containing cycloheximide and chloramphenicol. Mycopathol Mycol App 1960; 13:113-6.
- MacFaddin JF. Media for isolationcultivation-maintenance of medical bacteria, Vol I. Baltimore: Williams & Wilkins, 1985.
- Isenberg HD, Ed. Clinical microbiology procedures handbook. Washington, DC: ASM, 1992.
- 7. Vanderzant C, Splittstoesser, Eds. Compendium of methods for the microbiological examination of food. 3<sup>rd</sup> ed. Washington, DC: APHA, 1992.
- NCCLS. Quality assurance for commercially prepared microbiological culture media. 2<sup>nd</sup> ed. NCCLS document M22-A2. Wayne, PA: NCCLS, 1996.
- Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH. Manual of clinical microbiology. 7<sup>th</sup> ed. Washington: ASM, 1999.

Original: April 2003

Revised / Reviewed: February 2014