

0129 DISKS

- For in vitro use only -

Catalogue No. DD10 & 11

Our O129 Disks are used for the differentiation of vibrios from other gram-negative bacteria.

Shewan and Hodgkiss recognized the sensitivity of vibrios to the vibrio-static agent 0129 (2,4diamino-6,7-di-isopropyl-pteridine phosphate) in 0129 was found to be useful in the differentiation of vibrios from other gram-negative bacteria especially aeromonads, which are characteristically resistant to 0129. Among the genera, different species of vibrios show different sensitivities to 0129; this can be used as a diagnostic feature as antimicrobial disks of different concentrations can be used to determine their degree of sensitivity. 0129 disks are offered at two concentrations: 10-µg and 150-µg. Methods for standardized disk antimicrobial susceptibility testing are employed, with any zone of inhibition around 0129 disks being regarded as sensitive. containing media (0.5%) must be used for the testing procedure, as sodium ions stimulate the growth of all Vibrio species and are required by most.

Recommended Procedure

- 1. Obtain a pure, fresh culture of the test organism.
- 2. Using a sterile swab, streak a sample of the organism onto a non-selective Blood Agar Plate (containing 0.5% NaCl) in three directions to obtain a heavy, confluent growth.
- 3. Aseptically place one 10µg and 150µg O129 Disk onto the agar surface. Ensure that the disks are situated suitably apart from each other to avoid meeting of zones.
- 4. Incubate aerobically at 35°C for 24 hours.
- 5. Observe for zones of inhibition.

Interpretation of Results

Sensitive: Zone of inhibition around both O129

disks

Partially Sensitive: Zone of inhibition around the 10-µg

disk; no zone around 150-µg disk

Resistant: No zone of inhibition around both 0129 disks

Organism	MIC	Disk Test
	(mg/mL)	
Aeromonas species	400	R
Vibrio species		
V. natriegens	40-60	PS
V. alginolyticus	1-50	PS
V. parahaemolyticus	15-40	PS
V. harveyi	10-20	PS
V. campbellii	3-20	PS
V. cholerae	2-7.5	S
Non-O1 cholera vibrios	2-7.5	S
V. metschnikovii	2-7.5	S
V. anguillarum	1-5	S
V. pelagia	1-5	S
Plesiomonas species	2-40	Variable

R = resistant PS = partially sensitive S = sensitive

Results from the 0129 disk test should be interpreted with conjunction with other tests including the results of the salt requirement test for reliable identification of pathogenic *Vibrio* species.

 Vibrio cholerae O129-resistant strains have been reported especially from recent epidemics. Non-01 Vibrio cholerae O129 resistance has also been reported

Quality Control

Organism Expected Results

Vibrio metschnikovii Sensitive

ATCC 7708

Vibrio parahaemolyticus Partially sensitive

ATCC 17802

Aeromonas hydrophilia Resistant

ATCC 49140

Storage and Shelf Life

Our O129 Disks should be stored at -20°C. At this temperature they have a shelf life of 26 weeks from the date of manufacture.

References

- 1. Shewan JM, Hodgkiss W. Nature 1954; 63:208-9.
- 2. Ramamurthy T, Pal A, Pal SC, Nair GB. Taxonomic implications of the emergence of high frequency of occurrence of 2,4-diamino-6,7-diisopropylpteridine-resistant strains of *Vibrio cholerae* from clinical cases of cholera in Calcutta, India. J Clin Microbiol 1992; 30:742-3
- 3. Isenberg HD, Ed. Clinical microbiology procedures handbook, Vol 1. Washington, DC: ASM, 1992.
- Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, Eds. Manual of clinical microbiology. 7th ed. Washington, DC: ASM, 1999.
- MacFaddin JF. Biochemical tests for the identification of medical bacteria, 3rd ed. Philadelphia: Lippincott Williams & Wilkins, 2000.

Original: July 2003 Reviewed: October 2014